In 1985, RFC 950 defined a standard procedure to support the subnetting, or division, of
a single Class A, B, or C network number into smaller pieces. Subnetting was
introduced to overcome some of the problems that parts of the Internet were beginning
to experience with the classful two-level addressing hierarchy:
- Internet routing tables were beginning to grow.
- Local administrators had to request another network number from the Internet
before a new network could be installed at their site.
Both of these problems were attacked by adding another level of hierarchy to the IP
addressing structure. Instead of the classful two-level hierarchy, subnetting supports a
three-level hierarchy. Figure 6 illustrates the basic idea of subnetting which is to divide
the standard classful host-number field into two parts - the subnet-number and the hostnumber
on that subnet.
Subnetting attacked the expanding routing table problem by ensuring that the subnet
structure of a network is never visible outside of the organization's private network. The
route from the Internet to any subnet of a given IP address is the same, no matter which
subnet the destination host is on. This is because all subnets of a given network number
use the same network-prefix but different subnet numbers. The routers within the
private organization need to differentiate between the individual subnets, but as far as the
Internet routers are concerned, all of the subnets in the organization are collected into a
single routing table entry. This allows the local administrator to introduce arbitrary
complexity into the private network without affecting the size of the Internet's routing
tables.
Subnetting overcame the registered number issue by assigning each organization one (or
at most a few) network number(s) from the IPv4 address space. The organization was
then free to assign a distinct subnetwork number for each of its internal networks. This
allows the organization to deploy additional subnets without needing to obtain a new
network number from the Internet.
In Figure 7, a site with several logical networks uses subnet addressing to cover them
with a single /16 (Class B) network address. The router accepts all traffic from the
Internet addressed to network 130.5.0.0, and forwards traffic to the interior subnetworks
based on the third octet of the classful address. The deployment of subnetting within the
private network provides several benefits:
- The size of the global Internet routing table does not grow because the site
administrator does not need to obtain additional address space and the routing
advertisements for all of the subnets are combined into a single routing table entry.
- The local administrator has the flexibility to deploy additional subnets without
obtaining a new network number from the Internet.
- Route flapping (i.e., the rapid changing of routes) within the private network does
not affect the Internet routing table since Internet routers do not know about the
reachability of the individual subnets - they just know about the reachability of the
parent network number.
No comments:
Post a Comment